7,525 research outputs found

    Energy-Efficient Multi-View Video Transmission with View Synthesis-Enabled Multicast

    Full text link
    Multi-view videos (MVVs) provide immersive viewing experience, at the cost of heavy load to wireless networks. Except for further improving viewing experience, view synthesis can create multicast opportunities for efficient transmission of MVVs in multiuser wireless networks, which has not been recognized in existing literature. In this paper, we would like to exploit view synthesis-enabled multicast opportunities for energy-efficient MVV transmission in a multiuser wireless network. Specifically, we first establish a mathematical model to characterize the impact of view synthesis on multicast opportunities and energy consumption. Then, we consider the optimization of view selection, transmission time and power allocation to minimize the weighted sum energy consumption for view transmission and synthesis, which is a challenging mixed discrete-continuous optimization problem. We propose an algorithm to obtain an optimal solution with reduced computational complexity by exploiting optimality properties. To further reduce computational complexity, we also propose two low-complexity algorithms to obtain two suboptimal solutions, based on continuous relaxation and Difference of Convex (DC) programming, respectively. Finally, numerical results demonstrate the advantage of the proposed solutions.Comment: 22 pages, 6 figures, to be published in GLOBECOM 201

    The masses and axial currents of the doubly charmed baryons

    Full text link
    The chiral dynamics of the doubly heavy baryons is solely governed by the light quark. In this work, We have derived the chiral corrections to the mass of the doubly heavy baryons up to N3^3LO. The mass splitting of Ξcc\Xi_{cc} and Ωcc\Omega_{cc} at the N2^2LO depends on one unknown low energy constant c7c_7. With the experimental mass of Ξcc(3520)\Xi_{cc}(3520) as the input, we estimate the mass of Ωcc\Omega_{cc} to be around 3.678 GeV. Moreover, we have also performed a systematical analysis of the chiral corrections to the axial currents and axial charges of the doubly heavy baryons. The chiral structure and analytical expressions will be very useful to the chiral extrapolations of the future lattice QCD simulations of the doubly heavy baryons.Comment: 10 pages, 2 tables, 3 figure. Accepted by Phys. Rev.

    Applicability of Relativistic Point-Coupling Models to Neutron Star Physics

    Full text link
    Comparing with a wide range of covariant energy density functional models based on the finite-range meson-exchange representation, the relativistic mean-field models with the zero-range contact interaction, namely the relativistic point-coupling models, are still infrequent to be utilized in establishing nuclear equation of state (EoS) and investigating neutron star properties, although comprehensive applications and achievements of them in describing many nuclear properties both in ground and exited states are mature. In this work, the EoS of neutron star matter is established constructively in the framework of the relativistic point-coupling models to study neutron star physics. Taking two selected functionals DD-PC1 and PC-PK1 as examples, nuclear symmetry energies and several neutron star properties including proton fractions, mass-radius relations, the core-crust transition density, the fraction of crustal moment of inertia and dimensionless tidal deformabilities are discussed. A suppression of pressure of neutron star matter found in the functional PC-PK1 at high densities results in the difficulty of its prediction when approaching to the maximum mass of neutron stars. In addition, the divergences between two selected functionals in describing neutron star quantities mentioned above are still large, ascribing to the less constrained behavior of these functionals at high densities. Then it is expected that the constraints on the dense matter EoS from precise and massive modern astronomical observations, such as the tidal-deformabilities taken from gravitational-wave events, would be essential to improve the parameterizing of the relativistic point-coupling models.Comment: To appear in the AIP Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy, Jan. 3-7, Xiamen, Chin
    • …
    corecore